Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.

Identifieur interne : 000933 ( Main/Exploration ); précédent : 000932; suivant : 000934

Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.

Auteurs : Keisuke Nakagawa [États-Unis] ; Krishna Narayanan [États-Unis] ; Masami Wada [États-Unis] ; Shinji Makino [États-Unis]

Source :

RBID : pubmed:30068649

Descripteurs français

English descriptors

Abstract

Stress granule (SG) formation is generally triggered as a result of stress-induced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERS-CoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses.

DOI: 10.1128/JVI.00902-18
PubMed: 30068649


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30068649</idno>
<idno type="pmid">30068649</idno>
<idno type="doi">10.1128/JVI.00902-18</idno>
<idno type="wicri:Area/PubMed/Corpus">000823</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000823</idno>
<idno type="wicri:Area/PubMed/Curation">000823</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000823</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000878</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000878</idno>
<idno type="wicri:Area/Ncbi/Merge">001F17</idno>
<idno type="wicri:Area/Ncbi/Curation">001F17</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001F17</idno>
<idno type="wicri:Area/Main/Merge">000936</idno>
<idno type="wicri:Area/Main/Curation">000933</idno>
<idno type="wicri:Area/Main/Exploration">000933</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.</title>
<author>
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA shmakino@utmb.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Gene Deletion</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Middle East Respiratory Syndrome Coronavirus (genetics)</term>
<term>Middle East Respiratory Syndrome Coronavirus (physiology)</term>
<term>Protein Biosynthesis</term>
<term>Vero Cells</term>
<term>Viral Regulatory and Accessory Proteins (genetics)</term>
<term>Viral Regulatory and Accessory Proteins (metabolism)</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (génétique)</term>
<term>Coronavirus du syndrome respiratoire du Moyen-Orient (physiologie)</term>
<term>Délétion de gène</term>
<term>Humains</term>
<term>Protéines virales régulatrices ou accessoires (génétique)</term>
<term>Protéines virales régulatrices ou accessoires (métabolisme)</term>
<term>Réplication virale</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Viral Regulatory and Accessory Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
<term>Protéines virales régulatrices ou accessoires</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Viral Regulatory and Accessory Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales régulatrices ou accessoires</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Coronavirus du syndrome respiratoire du Moyen-Orient</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Middle East Respiratory Syndrome Coronavirus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Gene Deletion</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Protein Biosynthesis</term>
<term>Vero Cells</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biosynthèse des protéines</term>
<term>Cellules HeLa</term>
<term>Cellules Vero</term>
<term>Délétion de gène</term>
<term>Humains</term>
<term>Réplication virale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stress granule (SG) formation is generally triggered as a result of stress-induced translation arrest. The impact of SG formation on virus replication varies among different viruses, and the significance of SGs in coronavirus (CoV) replication is largely unknown. The present study examined the biological role of SGs in Middle East respiratory syndrome (MERS)-CoV replication. The MERS-CoV 4a accessory protein is known to inhibit SG formation in cells in which it was expressed by binding to double-stranded RNAs and inhibiting protein kinase R (PKR)-mediated phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Replication of MERS-CoV lacking the genes for 4a and 4b (MERS-CoV-Δp4), but not MERS-CoV, induced SG accumulation in MERS-CoV-susceptible HeLa/CD26 cells, while replication of both viruses failed to induce SGs in Vero cells, demonstrating cell type-specific differences in MERS-CoV-Δp4-induced SG formation. MERS-CoV-Δp4 replicated less efficiently than MERS-CoV in HeLa/CD26 cells, and inhibition of SG formation by small interfering RNA-mediated depletion of the SG components promoted MERS-CoV-Δp4 replication, demonstrating that SG formation was detrimental for MERS-CoV replication. Inefficient MERS-CoV-Δp4 replication was not due to either the induction of type I and type III interferons or the accumulation of viral mRNAs in the SGs. Rather, it was due to the inefficient translation of viral proteins, which was caused by high levels of PKR-mediated eIF2α phosphorylation and likely by the confinement of various factors that are required for translation in the SGs. Finally, we established that deletion of the 4a gene alone was sufficient for inducing SGs in infected cells. Our study revealed that 4a-mediated inhibition of SG formation facilitates viral translation, leading to efficient MERS-CoV replication.
<b>IMPORTANCE</b>
Middle East respiratory syndrome coronavirus (MERS-CoV) causes respiratory failure with a high case fatality rate in patients, yet effective antivirals and vaccines are currently not available. Stress granule (SG) formation is one of the cellular stress responses to virus infection and is generally triggered as a result of stress-induced translation arrest. SGs can be beneficial or detrimental for virus replication, and the biological role of SGs in CoV infection is unclear. The present study showed that the MERS-CoV 4a accessory protein, which was reported to block SG formation in cells in which it was expressed, inhibited SG formation in infected cells. Our data suggest that 4a-mediated inhibition of SG formation facilitates the translation of viral mRNAs, resulting in efficient virus replication. To our knowledge, this report is the first to show the biological significance of SG in CoV replication and provides insight into the interplay between MERS-CoV and antiviral stress responses.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Nakagawa, Keisuke" sort="Nakagawa, Keisuke" uniqKey="Nakagawa K" first="Keisuke" last="Nakagawa">Keisuke Nakagawa</name>
</region>
<name sortKey="Makino, Shinji" sort="Makino, Shinji" uniqKey="Makino S" first="Shinji" last="Makino">Shinji Makino</name>
<name sortKey="Narayanan, Krishna" sort="Narayanan, Krishna" uniqKey="Narayanan K" first="Krishna" last="Narayanan">Krishna Narayanan</name>
<name sortKey="Wada, Masami" sort="Wada, Masami" uniqKey="Wada M" first="Masami" last="Wada">Masami Wada</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000933 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000933 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30068649
   |texte=   Inhibition of Stress Granule Formation by Middle East Respiratory Syndrome Coronavirus 4a Accessory Protein Facilitates Viral Translation, Leading to Efficient Virus Replication.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30068649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021